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Abstract-With respect to radial heat conduction in tube and shell walls as well as heat loss from the shell 
to the environment, a predicting method for transient behaviour of counter and parallel heat exchangers 
is developed. Some parameters such as the Biot number (Bi) and the Fourier number (Fo) of estimating 
the effect of radial heat conduction are proposed. If Bi > 0.05, radial heat conduction will remarkably 
affect dynamic characteristic of heat exchangers and it should be taken into account. In addition, an 
approximate approach of considering radial heat conduction is presented, which reduces much of com- 
puting time. There exists satisfactory coincidence between accurate and approximate treatment of radial 

heat conduction. 

INTRODUCTION 

BESIDES stationary design and rating procedures, 
dynamic modelling of thermal performance of heat 
exchangers is incurring more and more attention 
because of the increasing demand for real-time control 
and optimal operation of the whole plant. One can 
find plenty of publications on transient behaviour of 
shell and tube heat exchangers [l-4]. In these papers, 
there exists a common feature that the effect of heat 
conduction resistance of tubes and shells on transient 
response to inlet disturbances has been neglected. The 
problem of how great the effect of wall heat con- 
duction resistance to transient behaviour of heat 
exchangers is still unclear. To the best of our knowl- 
edge, so far few have quantitatively estimated this 
influence in detail. Regardless of the shell, Ma et al. 

[S] considered the effect of heat conduction resistance 
of a tube in their work with the plug-flow model, but 
the description is indistinct and only the final result 
in the frequency-domain is listed. It can be inferred 
from their result that they might approximately treat 
a tube wall as an infinite wall, which should be allowed 
only for high frequency oscillations or short time 
intervals since the curvature radius of a tube is gen- 
erally not big enough to consider a tube wall as an 
infinite wall. In addition to the tube wall, heat canacitv 

damping effects are dependent on ratios of their heat 
capacities to those of fluids. Heat exchange between 
hot and cold fluids and heat loss to the environment 
are controlled by the convective heat transfer resist- 

ance R,,,, between the fluid and the wall and heat 

conduction resistance Rcond of the wall. Therefore, a 
suitable quantity to describe the effect of heat con- 
duction of a wall is the Biot number Bi which is 
defined as the ratio of Rcond to R,,,,. A larger value of 
Bimeans a greater effect of heat conduction resistance. 
The usual treatment method of neglecting Kond cor- 
responds to the ideal case Bi = 0. 

Based on the dispersion model, this article attempts 

to analyse the effect of heat conduction in a tube 
wall and in a shell on dynamic process of counter or 
parallel heat exchangers. Heat capacities of both fluids 
and solid components are included. Heat loss from 
the shell to the environment is involved. Any entrance 
variation of temperatures of both fluids is allowed. 
For the sake of reduction of computational time, the 
Laplace transform and numerical inversion tech- 
niques are used. 

GOVERNING EQUATIONS OF TRANSIENT 

PROCESS 
& < 

and heat conduction resistance as well as heat transfer Heat conduction in the tube walls and the shell of 
between the shell and the environment exert influence exchangers embodies both transverse and longi- 
on transient behaviour of exchangers, which have tudinal direction. In general, longitudinal heat con- 
been ignored in most publications. duction in the solid wall is negligible [6]. Therefore, 

A tube wall and shell will damp transient response here attention is focused on transverse heat conduc- 
of exchangers to any entrance disturbances and such tion. A counter or parallel heat exchanger is sche- 
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mat&thy shown in Fig. I. Based on the assumption 
of constant properties, the d~m~I~sionless governing 
equations for the shellside and tubeside fluids are 
respectively derived as follows : 

i (lb) 

FIG. I. Scheme ctf a counter or parallel heat exchanger. 

r,(s,=f =.q,(x) at ,_==o (ICI 

12 = j;(r) at .Y = 0 for pardllel flow 

f2 = j_(z) at .X = 1 for counter flow 
(2b) 

f2(S.Z) = g,(.y) at 2 = 0 (2C) 

where L’, = (hA),/Ci/,, 5, = (hAj,lCi/,, and l:, = 
(hn),/ ci/, According to the definition of the number 
of transfer units [7]. U, and Uz can be regarded as the 
shell and tubeside number of transfer units, respec- 
tively. Equation (I) is derived from the dispersion 

model and the first term on the left side describes the 
effect of shellside flow maldistribution. t,, in equa- 
tions (1) and tu2 in equations (2) arc dimensionless 
wall temperatures on the sides of fluid I and fluid 2, 

respectively. In view of the lateral heat conduction in 
a tube wall, the following system of partial di~erential 
equations is derived : 
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at 
2+crBi,(t,-t,)=0 atC=l 
ae 

(3c) 

t,(&z) = sW(5) at z = 0 (3d) 

where u = r,/&, and Bi, = h, &,j&, or Bi* = h, 6,/l, 
is the Biot number which is composed of the con- 
vective resistance on the side of fluid 1 or fluid 2 and 
the conduction resistance of a tube wall. Obviously, 
the case of Bi, + 0 and Bi* + 0 means that no tem- 
perature gradient in a wall exists and t,, = t,, = t,, 
which is one of the most common assumptions for 
dynamic analysis. In fact, Bi, and Bi, assume finite 
values other than 0 (especially for turbulent flow and 
phase-change flow) and the assumption of zero con- 
duction resistance is violated. The Fourier number 
Fo, = a,,,z,,/di prescribes the temperature response of 
a tube wall to any temperature changes of fluids. 
Therefore, both Bi,,* and Fo, characterize transient 

heat transfer process of heat exchangers. Obviously, 
there exist the following relationships : 

Bi* = Bi,:R* I+ & 
A > 

and 

1 
Fo,Bi, =k!~_ 

2 R, l+R,,’ 

The inner wall temperature tsi of the shell in equation 
(la) is given by 

-x+jBi,,(t,-t,)=O atq=b (5b) 

at, 
~+~Bi,,t,=O atq= 1 (5c) 

t,(rl,z) =9,(v) at2 = 0 (5d) 

where p = rsO/Ss, Bi,, = h,is,/n,, Bi,, = h,&& and 
Fo, = a,z,, IS,‘. Boundary condition (5~) describes heat 
loss of the shell to the environment and the heat loss 
approaches zero if Bi,, -+ co. Similarly, 

Fo,Bi,, = I+“’ 5 
2(1 +Rcd R&v. 

As for other solid components such as segments and 
end plates, their heat capacities can be approximately 
incorporated in the heat capacity of tubes to take their 
effects into account. The combination of differential 

equations (l)-(3) and (5) prescribes dynamic pro- 
cesses taking place in counter or parallel heat ex- 
changers. These equations can be separately solved by 
means of the Laplace transform in the transform- 
domain, although they are closely conjugated through 
the energy balance among fluid streams and solid 
components. 

SOLUTIONS IN THE LAPLACE TRANSFORM- 

DOMAIN 

Applying the Laplace transform to equation (3a), 

one can find its general solution 

T, = ~,Z,(G~~)+C&O(GV) (7) 

where I, and K,, are modified Bessel functions of zero 
order and CJ,_ = (sa”/Fow) ‘I*. Solution (7) is valid for 
uniform initial condition SW(q) = 0. If g,,,(q) # 0, one 

can use the parameter variation method to find a 
general form of solution to equation (3a). According 
to the given boundary conditions (3b) and (3c), the 
transformed temperatures T,, and T,, of t,, and t,, 
are determined as 

T,, = a,T, +cc,T, and T,* = PIT, +P*T* (8) 

where SI,, x2, /3, and fi2 are functions of zero- and first- 
order modified Bessel functions and the Biot number. 
Their forms are confined by conditions (3b) and (3~). 
Similarly, application of the Laplace transform to 
equations (5a) yields 

Ts = d,Z,(o,5)+UG,(G) (9) 

where os = ($*/Fo,). The transformed temperature 
T,, of t,, is obtained as 

T,, = Vi (10) 

where y is determined from boundary conditions (5b) 
and (5~). By inserting equations (8) and (10) into the 
transformed forms of equations (1) and (2) one can 
find the transformed temperatures T, and T* of both 
fluids in the Laplace transform-domain. Therefore, 
equations (1) and (2) are transformed as follows, in 
view of the uniform initial conditions : 

d*T, 
p--Pez-a,,T,-a,,T*=O 
dx* 

(11) 

where 

dT, _ -a*, T, -a,*T* = 0 
dx (12) 

a,, = Pe(s+ U, + Us- lJ,cc, - U,y), a,* = -PeU,ci* 

a2! = _+U2Pl, and a2* = f(U2j3-R,s-U*). 

The transformed temperatures T, and T* are de- 
termined subject to the related boundary conditions : 

T,(x,s) =A,exp(L,x)+A,exp(I,x)+A,exp(I,x) 

(13) 

T,(x,s) = A,e, exp(i,x)+A,e,exp(I,x) 

+A,e3 exp (W (14) 

where the eigenvalues A,(i = 1,2, 3) are given by 

13-(Pe+a*2)/22+(Pea**-a,,)i 

+@,,a**--a,*a*,) = 0 (15) 

and other coefficients have the forms 
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- F> (~1 

I 
A2 = - 

A 
F, (s)[e,w3i, exp (i,) -E, PC, j12 exp (j.,)] 

- Fz 0) 

-F2(s) 

A = 

-elisii, exp(i,)] 

It’, = I. n2 = I. and 1~~ = I for parallel flow. 
M‘, = exp (2,). H‘? = exp(i,,), and rr3 = exp (j_,) for 
counterflow. 

The inversion of equations (13) and (14) yields tran- 
sient temperature distributions of both fluids subject 
to any inlet temperature variations in the real time- 
domain. Distinctly, analytical inversion is an over- 
powering problem. It is rational for one to resort to nu- 
merical inversion techniques such as Gaver-Stehfest 
algorithm [8] and the numerical inversion based on 
the Fourier series [9], although the numerical inver- 
sion is an ill-posed problem. The first algorithm 
involves only the real variable and the latter the com- 
plex variable. By choosing one of these two techniques 
according to types of inlet temperature variations, one 

can accurately perform numerical inversion of the 
Laplacc transform [6]. However, the preliminary com- 
putation has shown that it takes a large amount of 
computing time for one to obtain numerical inversion 
results from equations (I 3) and (14) ifthc transformed 
forms (7) and (9) are utilized, for numerical inte- 
gration of the modified Bessel functions such as /,, and 
K,, (or I, and K,) need so much time that equations 
(I 3) and (14) may be of little use for I-c&time control 
and optimal operation of heat exchangers. 

An alternative approach to avoid such a difticulty 
is application of the finite-difference method. It con- 
sists of two steps: first equations (3) and (5) are trans- 
formed into the Laplace image-domain against the 
time-variable and then the transformed ordinary 
differential equations are replaced by their cquitalent 
difference-equations defined on ;I number of indi- 
vidual discrete points pertinent to the space-variable. 
Thcreforc. the differential equations are reduced to a 
set of algebraic equations. In this way. one can always 
obtain the following vectorial matrix forms for T,, and 

T, 

CT, = b, and DT, :-z b, (16) 

where vectors T, and T, are composed 01. the trans- 
formed temperatures T,,, (i = I. 2. , M) and T,: 
(j = 1, 2. . N), respectively. Matrix C or D is 
determined by finite-difference approximation and 
numbers of discretized points of a tube wall or the 

shell, and b, or b, by the boundary conditions. 
On solving equations (16), one finds T,,. T,, and 

T,, which are needed for determining T, and T2. II‘ 
grid points M and N are more than 4. it is somewhat 
difficult to express T,, 1 Tw2 and T,< as explicit functions 
of T, and T?. In these cases. one should also substitute 
the transformed forms of equations (1) and (2) with 
the corresponding finite-difference forms. By com- 
bining them with equations (I 6), one can first obtain 
values of the transformed tcmpcratures in the imape- 
domain by iteration, and then temperature dis- 
tributions in the real time-domain by the numerical 
inversion. Such a procedure may bc called Hybrid 
Finite-Difference and Laplace Transform Method. In 
the simplest case (with enough accuracy) that both 
the tube wall and the shell are divided into two layeri; 
(three grid points) in radial direction, 7;, and T,, as 
well as T,, can be explicitly expressed by the same 
forms as equations (8) and (IO). Here coefficients 2, . . 
j ,,z. and 7 arc dependent upon finite-difference forms. 
To ensure the finite-difference approximation the 
second order of accuracy, the derivatives such as 
dT,,/d,i and dTJdn are replaced by the central finitc- 
difference and the boundary conditions by three-point 
finite-difference [IO]. Thus. solutions ( 13) and ( 14) arc 
still valid even if the finite-difference method is applied 
to the transformed equations of t,, and t,. From these 
transformed solutions, the numerical inversion will 
accurately and quickly yield the final transient 
response to any inlet temperature variations. 
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EFFECT OF RADIAL HEAT CONDUCTION 

Solutions (13) and (14) construct the basis of trans- 

fer functions for multi-input and multi-output 
systems. If necessary, the transfer functions can be 
expressed by a matrix form [l I]. In this article the 
emphasis is put on transient behaviour of heat 
exchangers in the time-domain to quantitatively esti- 
mate the effect of radial heat conduction in a tube wall 
and in the shell. By means of the above-mentioned 
numerical inversion techniques, some examples have 

been calculated. 
Figure 2 shows outlet temperature responses t,, and 

tie of both fluids to the step temperature change taking 
place at the entrance of fluid 1 in a counterllow heat 
exchanger. The curves in the figure clearly illustrate 
the considerable effect of radial heat conduction in a 
tube wall on dynamic characteristic. If the Biot num- 
ber Bi, > 3, negligence of this type of heat conduction 
leads to over 50% error of the calculated outlet tem- 
peratures. Only if Bi, < 0.05 can one neglect the radial 
heat conduction in a wall, i.e. the temperature of the 

1 .o 
t 
le 

Bi,=6 3 1 
\ \ \ 

0.6 

O.O- 15 
Z 

(a) fluid I 

wall is independent of the space variable 5. Hence, it 
is recommended that one should first calculate the 

Biot number, and then decide whether to take the 
radial heat conduction into account or use the lumped 
heat capacity method for dynamic analysis of heat 
exchangers. In addition, the radial heat conduction 
affects temperature response on the other side. As 
shown in Fig. 2(b), the delay time of fluid 2 subject to 
the entrance variation of fluid 1 varies considerably 

with Bi, . A bigger value of Bi, results in more sluggish 
outlet response of fluid 2 and such sluggishness is 
quite plain for the dimensionless time z < 1. Without 
considering the radial heat conduction, transient 
analysis may conceal this tardy feature. 

The curves in Fig. 2 were calculated under extreme 
values of Bisi and Bi, (Bi$, = lo*, Bi,, = 0) which 

means no heat loss from the shell to the environment 
in this example, so that the steady energy balance 
R, (1 - t,,) = tze is accurately satisfied. For step inlet 
variations, the aforementioned two numerical inver- 
sion methods were applied and the same results were 
obtained. If there are oscillatory components in inlet 

disturbances, as pointed out previously [4], one should 
prefer the inversion algorithm based on the Fourier 
series. 

U, or V2 is one of the main parameters that manipu- 
late exertion of the effect of radial heat conduction. 
This effect remarkably increases with decreasing 
values of U, or U,. For the same Bi,, the smaller U, 
and U,, the longer the delay time of temperature 
response of a fluid corresponding to the inlet change 
on the other side. As illustrated in Fig. 3, this phenom- 
enon is especially distinct for the span z < 4 which 
covers a strongly transient phase. In this phase, if the 
radial heat conduction is neglected, the calculation 
error of tze becomes over 50% and will be greatly 
enlarged by reduction of U, and U2. After the dimen- 
sionless time z > 12. the effect of heat conduction no 

0.6 
t 
2e 0 0.05 0.1 0.2 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 
0 5 10 15 

(b) fluid 2 

FIG. 2. Transient responses to a step inlet temperature change 
in a counterflow heat exchanger (a = 0.9, b = 0.9, 
l/cl = 0.05,1/8 = 0.02,Pe = 20, U, = u2 = 1.5, u, = O.lU,, 
RI = R, = 1, R, = R, = 0.5, Bi,, = IO’, Bi,, = 0, fi (z) = 1, 

f2(z) = 0). (a) Fluid 1, (b) fluid 2. 

U,=U,=5 2.5 1 

FIG. 3. Effect of the radial heat conduction in a counterflow 
exchanger (a = 0.9, b = 0.9, l/a = 0.05, l/p = 0.02, Pe = 20, 
U,=O.lU,, R,=R,=l, R,=0.6, R,=0.4, Bi,=l. 

Bi,, = 108, Bi,, = 0, f,(z) = 1, f&z) = 0). 
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longer varies with the time variable since the heat 
transfer process has approached the stationary state. 

Besides the temperature difference between the out- 
side of the shell and the environment. parameters such 
as li, and Bi,, as well as Bi,, mainly control heat 
loss from exchangers to the environment. The Biot 

number Bi,, determines whether the temperature 
difference At, across the solid is larger than that 

between the inner surface of the shell and the fluid I 
or not, and then the Biot number Bi,, prescribes 
whether At, is larger than the temperature difference 
between the outside of the shell and the environment. 
In the example shown in Fig. 4 the remarkable influ- 
ence of the heat loss arises for : > 4.0 and it takes 
somewhat longer time to reach the steady state. If 
Bi,, > 0. the stationary relationship R, (I - / ,,) = tl, 

is no longer valid and the deviation between 
R, (I - f,,) and t2c is chiefly controlled by II, and Bi,, 

APPROXIMATION OF RADIAL HEAT 

CONDUCTION 

The lumped heat capacity model has often been 
used for a tube wall. i.c. temperature profile in a wall 
has been treated as a function of time only because 
of its simplicity. Based on this model, radial heat 
conduction is approximately treated below. Heat con- 
duction resistance of a tube wall can be divided into 
two parts, either of which is added to the side of fluid 
1 or fluid 2, respectively. Therefore. apparent heat 
transfer coefficients I$ and 11; arc introduced as : 

where coefficient q lies in the range 0 < cp < I and 

FIG. 4. Influence of heat loss in a counterflow heat exchanger 
(0 = 0.9, h = 0.9, I.,@ = 0.05. l/B = 0.02, Pr = 20, 
C’, = l,‘: = 2, U, = O.lU,, R, = R, = 1. R, = 0.6. R, = 0.4. 

f,(z) = I, f:(z) = 0). 

the average area A,, is defined as A,,, = (A, -A :) 
In (A , /) A :) for a circular tube [I?]. Thus, apparent 
shell and tubcside numbers of transfer units arc cx- 
pressed by 

(18) 

By substituting C!T and Cl: for I:, and II,, radial 

heat conduction in the wall can be approximately 
taken into account with the analytical method [4] 
based on the lumped heat capacity model for a tuhc 
wall, i.e. f,,,(<. z) = tuz(<, 1) = f,(1). As for the 
coefficient cp. the first intuitive choice may bc cp = 0.5. 
In fact. calculation has shown that any value of (p 

around 0.5 leads to no great fluctuation of exit tmn- 
sicnt responses. 

Figure 5 illustrates comparison between accurate 

and approximate treatment of radial heat conduction 
and reflects a satisfactory agreement between both 
approaches, especially within the initial rise-phase and 
end-phase (approaching a stationary state). Somc- 
what greater deviation exists in the middle phase of ;I 
transient process, which is usually acceptable. BJ 
means of the parameters defined in equations (IX). 
hence. one finds a short cut of handling radial heat 

conduction in a tube wall. and then saves much com- 
puting time which is important for real-time control. 

CONCLUSIONS 

The calculated examples have shown that radial 

heat conduction exerts a remarkable effect on tran- 
sient bchaviour of heat exchangers and should bc 
taken into account. The etfect embodies values 01‘ 
temperature responses and delay time of responses. 

FIG. 5. Comparison between accurate and approximate treat- 
ment of radial heat conduction in a counterflow heat 
exchanger (u = 0.9, h = 0.9. l/a = 0.05. 118 = 0.02. Pr = 20. 
u, = 0.1 ci,, R;= I. R, = 0.6, R, = 0.5, /‘,(;) r I. 

f:(z) = 0). 
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Only when the Biot number Bi, < 0.05 can this type 

of heat conduction be approximately neglected. Heat 
loss from the shell to the environment depends upon 

parameters such as U,, Sisi, and Si,,. It can also change 
the dynamic characteristic of exchangers. 

Using the apparent shell and tubeside number of 
transfer units defined in equation (18), one can 
approximately treat the effect of radial heat con- 
duction in the wall. Such treatment has taken advan- 
tage of the conventional lumped model for a tube wall 
and reduced much of computing time. 
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